Supporting Information for

REVIEW

Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design

Qi Qiao^a, Xiong Liu^a, Ting Yang^a, Kexin Cui^a, Li Kong^a, Conglian Yang^{a,*}, Zhiping Zhang^{a,b,c,*}

^aTongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China

^bNational Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China

^cHubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China

Received 21 January 2021; received in revised form 23 March 2021; accepted 6 April 2021

*Corresponding authors. Tel./fax: +86 027 83601832.

E-mail addresses: zhipingzhang@mail.hust.edu.cn (Zhiping Zhang), conglianyang@hust.edu.cn (Conglian Yang).

 Table S1 Basic properties of drugs in nanocarriers for ARDS treatment.

Drug	Structure	pK_a	Pharmacological	Carrier	Encapsulation	Drug	Ref.
			activity		efficiency (%)	loading (%)	
NAC	sh	3.25±0.10	Antioxidants	Cationic liposomes	79.26±3.34	_	52
	HN O			PLGA NPs	_	_	53
Naringenin	но	7.52 ± 0.40	Inhibition of p38	DPPC phytosomes	92.1±1.87	30.69±0.62	54
	OH O		MAPK				
			phosphorylation				
			and oxidative				
			stress				
Prednisolone	HO OH MOH	12.46±0.70	Glucocorticoid	Polymer micelles	_	-	55
Dexamethasone	O OH OH OH OH	12.13 ±0.70	Glucocorticoid	NLC	81.39–90.11	3.28–3.62	56
	H will I			BSA NPs	84.3±2.3	6.7±0.32	57
	0			Liposomes	92.0±3.0	_	58
				Lysozyme dextran	_	5	59
				nanogels			

				Monocyte membrane	_	40.9 ± 0.7	60
				derived vesicles			
Methylprednisolone	HOOOH	12.46±0.70	Glucocorticoid	cRGD-peptide	64.8	_	61
	H with H			grafted liposomes			
	o v			Liposomes	92.5±0.5	_	28
TPCA-1	H_2N	13.12±0.50	Selective	Polymer micelles	85–60	10.0–24.0	27
	HN S		inhibitor of $I\kappa B$	BSA NPs	_	25.0 ± 1.3	62
			kinase-2	Platelet-derived EVs	10.6	4.6	63
Curcumin	OH	8.11 ± 0.46	Suppresses the	R7L10 peptide	_	_	29
	HO		activation of	formed micelles			
			NF - κB	PEG-PLGA	68–63.5	3.24-8.14	64
				microspheres			
Simvastatin	O O O	13.49±0.40	Anti-inflammato	NLC	96.78 ± 0.12	4.85 ±0.01	65
			ry and	NLC	_	_	66
			endothelium-pro				
			tection				
Rolipram	NH	16.02 ± 0.40	PDE4 inhibitor,	Phosphatiosomes	> 90	_	25

			suppresses the	e Nanoemulsion	>95	_	67
			activation o	f			
			neutrophil				
Piceatannol	HOOH	9.30±0.10	Reduced	BSA NPs	10–14	_	68
	OH		neutrophil	Neutrophils-derived	_	1.7	69
			infiltration and	l vesicles			
			inhibit th	2			
			NF-κB pathway				
Sivelestat	ОН	3.67 ± 0.10	Inhibitor o	f Interbilayer-crosslin	60±5	_	70
	NH NH		neutrophil	ked multilamella	:		
			elastase	vesicles			
DNase-I	Endonuclease	_	Alleviate	PLGA NPs	_	_	71
			NETosis	Melanin-like	_	_	72
			dysregulation	nanospheres			
siRNA	_	_	Mediate gen	e Phosphorus-based	_	_	73
			silencing and	l dendrimer			
			inhibit th	e Guanidinated and	l –	_	74

expression of fluorinated
pro-inflammator bifunctional helical
y cytokines polypeptides
Pulmonary surfactant - - 75
coated nanogels

^{–,} not applicable; BSA, bovine serum albumin; cRGD, cyclic arginine glycine-D-aspartic acid; DPPC, dipalmitoylphosphatidylcholine; EVs, extracellular vesicles; MAPK, mitogen activated protein kinase; NAC, *N*-acetylcysteine; NF-κB, nuclear factor-κB; NPs, nanoparticles; PLGA, poly(lactic-*co*-glycolic acid).

 Table S2 Pulmonary delivery of nanomedicine for ARDS therapy.

Platform	Drug	Size	Charge	Animal	Therapeutic Note F	Ref.	
		(nm)	(mV)	model	schedule		
PLGA NPs	NAC	197.5	-10.4	i.p., LPS,	<i>i.t.</i> , 2 h Improved the delivery of antioxidant 5	53	
				rat	before injury and inhibited inflammation		
	EpoR cDNA	196	-20.63	Hyperoxic	Inhalation, Achieved rapidly uptake by lung 1	100	
				lung injury,	one week epithelial cells and sustained release		
				rat	after injury of EpoR cDNA, attenuated apoptosis		
					and oxidative stress		
	Plasmid HO-1 and	~170	+36.2	i.t., LPS,	<i>i.t.</i> , Reduced the expression of HO-1 and 3	30	
	LPS binding peptide			mice	immediately proinflammatory cytokines		
					after injury		
PAM NPs	Dexamethasone and	57.05	+16.59	i.t., LPS,	i.t., Achieved higher efficiency in 9	96	
	adiponectin gene			mice	immediately delivering adiponectin gene		
					after injury		
Polydopamine	-	~80	-	i.n., LPS,	i.n., 0.5 h Eliminated ROS and suppressed 7	79	
NPs				mice	after injury neutrophils		

Fluorinated	siRNA	~150	~10	i.t., L	LPS,	i.t., 2 h after	Potentiated mucus and cell 74
α -helical				mice		injury	membrane penetration
polyplexes							
Hydrophilic	_	~55	-2	i.t., L	LPS,	i.t., after	Hydrophilic nanogels inhibited LPS 106
polymer nanogels				mice		injury	induced immune response
Pulmonary	siRNA	~125	~-30	i.t., L	LPS,	<i>i.t.</i> , 24 h	SP-B enhanced cytosolic delivery of 75
surfactant coated				mice		before injury	siRNA and internalization by
nanogels							resident alveolar macrophages
Nanoemulsions	Dimethyl silicone	69.2	_	i.t., HCl,	, rat	i.t., after	With defoaming effect and inhibited 107
						injury	pulmonary edema
PAM-Chol	HO-1 gene and	120.4	+40.9	i.t., L	LPS,	i.t., 2 h after	Improved transfection efficiency and 99
polymer micelles	resveratrol			mice		injury	inhibited NF-κB
PS-PEG polymer	_	47.3	_	<i>i.t.</i> , I	HCl,	i.t., 5 h after	Synthetic polymers for replacing 108
nanomicelles				mice		injury	pulmonary surfactant
Phosphorus-based	siRNA	120-190	30-50	i.n., L	LPS,	<i>i.n.</i> , 24 h	Pyrrolidinium modified dendrimers 73
dendrimers				mice		before injury	formed complexation with siRNA
							and enhanced cellular uptake

cRGD-peptide	Methylprednisolone	156	-24.2	$i.t.$, IL-1 β ,	Inhalation,	Blocked interactions of	61
grafted liposomes				rat	0.5 h before	neutrophil-ECM and inhibited	
					injury	pro-inflammatory mediators	
Cationic	NAC, vitamin C and	138.5	+34.5	CLP-rat	<i>i.t.</i> , dairy, 5 d	Restoration of redox balance	52
liposomes	E				after injury		
DPPC phytosome	Naringenin	150.8	+20.97	i.t., HCl, rat	<i>i.t.</i> , 10 min	Improved the bioavailability of	54
					after injury	antioxidant and inhibited MAPK	
						pathways	
SP-C antibody	miR-486	~215	~-5	Mice	i.n.	SP-C antibody conjugated for	109
conjugated						specific targeting to lung AEC II	
lipoplexes							
DPPC-DOPE	_	200-300	_	i.t., HCl,	Inhalation, 5	Pulmonary surfactant aerosols,	110
nanovesicles				mice	min after	endocytosed by AEC II and	
					injury	improved pulmonary functions	
Peptide	Src tyrosine kinase	~700	_	i.t., LPS,	<i>i.t.</i> , 1 h	Improved the biocompatibility	83
self-assembled	inhibitor			mice	before injury		
NPs							

R3V6 peptide	S1PLyase siRNA	~50	_	i.t.,	LPS,	i.t., 2 h after	Combinational therapy for siRNA 31
formed micelles	and recombinant			mice		injury	delivery and anti-inflammation
	HMGB-1 box A						
	peptide						
R7L10 peptide	Curcumin and	~100	_	i.t.,	LPS,	i.t., 2 h after	Improved efficiency of plasmid 29
formed micelles	plasmid DNA			mice		injury	DNA and curcumin
EPCs derived	miRNA-126	30-120	_	i.t.,	LPS,	i.t., 4 h after	Target to regulate HMGB-1 and 111
exosomes				mice		injury	VCAM-1 expression for reducing
							lung inflammation and dysfunction
Au NPs	_	13	-36.4	i.t.,	LPS,	<i>i.t.</i> , 2 h	Targeted pulmonary macrophages 112
				mice		before injury	and inhibited TLR signals
	_	~13	_	i.t.,	LPS,	<i>i.t.</i> , 2 h	Inhibition on neutrophil and 113
				mice		before injury	regulation of Tregs
	_	19.7	_	i.n.,	LPS,	<i>i.t.</i> , 1 h	Inhibition on TLR4 signaling 114
				mice		before injury	pathways
	_	13.3	_	i.n.,	LPS,	<i>i.t.</i> , 1 h	Inhibited TLR4 and induced 115
				mice		before injury	autophagy

Porous Se@SiO ₂ -	55	~-19	i.n.,	LPS,	i.n.,	1	h	Targeted mitochondria to improve 116
nanospheres			mice		before	e inju	ıry	airway epithelial cells

–, not applicable; AEC II , alveolar type II epithelial cells; CLP, cecal ligation and puncture; cRGD, cyclic arginine glycine-D-aspartic acid; DOPE, phosphatidylethanolamine; DPPC, dipalmitoylphosphatidylcholine; ECM, extracellular matrix; EPCs, endothelial progenitor cells; EpoR, erythropoietin receptor; HCl, hydrochloric acid; HMGB-1, high mobility box-1; HO-1, heme oxygenase-1; *i.n.*, intranasal; *i.p.*, intraperitoneal; *i.t.*, intratracheal; IL, interleukin; LPS, lipopolysaccharide; MAPK, mitogen activated protein kinase; NAC, *N*-acetylcysteine; NF-κB, transcription factor nuclear factor-κB; NPs, nanoparticles; PAM, polyamidoamine; PLGA, poly (lactic-*co*-glycolic acid); PS-PEG, poly(styrene-*b*-ethylene glycol); ROS, reactive oxygen species; S1PLyase, sphingosine-1-phosphate lyase; SP, surfactant protein; TLR, Toll-like receptor; VCAM-1, vascular cell adhesion molecule-1.